On Stochastic Proximal Gradient Algorithms
نویسندگان
چکیده
We study a perturbed version of the proximal gradient algorithm for which the gradient is not known in closed form and should be approximated. We address the convergence and derive a non-asymptotic bound on the convergence rate for the perturbed proximal gradient, a perturbed averaged version of the proximal gradient algorithm and a perturbed version of the fast iterative shrinkagethresholding (FISTA) of Beck and Teboulle (2009). When the approximation is achieved by using Monte Carlo methods, we derive conditions involving the Monte Carlo batch-size and the step-size of the algorithm under which convergence is guaranteed. In particular, we show that the Monte Carlo approximations of some averaged proximal gradient algorithms and a Monte Carlo approximation of FISTA achieve the same convergence rates as their deterministic counterparts. To illustrate, we apply the algorithms to high-dimensional generalized linear mixed models using `1-penalization.
منابع مشابه
Stochastic Proximal Gradient Algorithms for Multi-Source Quantitative Photoacoustic Tomography
The development of accurate and efficient image reconstruction algorithms is a central aspect of quantitative photoacoustic tomography (QPAT). In this paper, we address this issues for multi-source QPAT using the radiative transfer equation (RTE) as accurate model for light transport. The tissue parameters are jointly reconstructed from the acoustical data measured for each of the applied sourc...
متن کاملAccelerating Stochastic Composition Optimization
Consider the stochastic composition optimization problem where the objective is a composition of two expected-value functions. We propose a new stochastic firstorder method, namely the accelerated stochastic compositional proximal gradient (ASC-PG) method, which updates based on queries to the sampling oracle using two different timescales. The ASC-PG is the first proximal gradient method for t...
متن کاملAsynchronous Stochastic Proximal Optimization Algorithms with Variance Reduction
Regularized empirical risk minimization (R-ERM) is an important branch of machine learning, since it constrains the capacity of the hypothesis space and guarantees the generalization ability of the learning algorithm. Two classic proximal optimization algorithms, i.e., proximal stochastic gradient descent (ProxSGD) and proximal stochastic coordinate descent (ProxSCD) have been widely used to so...
متن کاملProximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization
We analyze stochastic algorithms for optimizing nonconvex, nonsmooth finite-sum problems, where the nonsmooth part is convex. Surprisingly, unlike the smooth case, our knowledge of this fundamental problem is very limited. For example, it is not known whether the proximal stochastic gradient method with constant minibatch converges to a stationary point. To tackle this issue, we develop fast st...
متن کاملAsynchronous Stochastic Proximal Methods for Nonconvex Nonsmooth Optimization
We study stochastic algorithms for solving non-convex optimization problems with a convex yet possibly non-smooth regularizer, which nd wide applications in many practical machine learning applications. However, compared to asynchronous parallel stochastic gradient descent (AsynSGD), an algorithm targeting smooth optimization, the understanding of the behavior of stochastic algorithms for the n...
متن کاملStochastic Proximal Gradient Algorithms for Penalized Mixed Models
Motivated by penalized likelihood maximization in complex models, we study optimization problems where neither the function to optimize nor its gradient have an explicit expression, but its gradient can be approximated by a Monte Carlo technique. We propose a new algorithm based on a stochastic approximation of the Proximal-Gradient (PG) algorithm. This new algorithm, named Stochastic Approxima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014